Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
-
ABSTRACT The shape of the low-mass (faint) end of the galaxy stellar mass function (SMF) or ultraviolet luminosity function (UVLF) at $$z \gtrsim 6$$ is an open question for understanding which galaxies primarily drove cosmic reionization. Resolved photometry of Local Group low-mass galaxies allows us to reconstruct their star formation histories, stellar masses, and UV luminosities at early times, and this fossil record provides a powerful ‘near-far’ technique for studying the reionization-era SMF/UVLF, probing orders of magnitude lower in mass than direct HST/JWST observations. Using 882 low-mass ($$M_{\rm star}\lesssim 10^{9}\, \rm {M_\odot }$$) galaxies across 11 Milky Way (MW)- and Local Group-analogue environments from the FIRE-2 cosmological baryonic zoom-in simulations, we characterize their progenitors at $$z=6\!-\!9$$, the mergers/disruption of those progenitors over time, and how well their present-day fossil record traces the high-redshift SMF. A present-day galaxy with $$M_{\rm star}\sim 10^5\, \rm {M_\odot }$$ ($$\sim 10^9\, \rm {M_\odot }$$) had $$\approx 1$$ ($$\approx 30$$) progenitors at $$z\approx 7$$, and its main progenitor comprised $$\approx 100~{{\ \rm per\ cent}}$$ ($$\approx 10~{{\ \rm per\ cent}}$$) of the total stellar mass of all its progenitors at $$z\approx 7$$. We show that although only $$\sim 15~{{\ \rm per\ cent}}$$ of the early population of low-mass galaxies survives to present day, the fossil record of surviving Local Group galaxies accurately traces the low-mass slope of the SMF at $$z \sim 6 \!-\! 9$$. We find no obvious mass dependence to the mergers and accretion, and show that applying this reconstruction technique to just low-mass galaxies at $z = 0$ and not the MW/M31 hosts correctly recovers the slope of the SMF down to $$M_{\rm star} \sim 10^{4.5}\, \rm {{\rm M}_{\odot }}$$ at $$z \gtrsim 6$$. Thus, we validate the ‘near-far’ approach as an unbiased tool for probing low-mass reionization-era galaxies.more » « less
-
Abstract We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with and . (ii) A metallicity gradient of −0.54 ± 0.07 dex (−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with and and a red RGB with and . (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up.more » « less
An official website of the United States government
